Molecular support for the establishment of the new genus *Laurenciella* within the *Laurencia* complex (Ceramiales, Rhodophyta)

Valéria Cassano^{1,*}, Mariana C. Oliveira¹, María Candelaria Gil-Rodríguez², Abel Sentíes³, Jhoana Díaz-Larrea³ and Mutue T. Fujii⁴

¹Departamento de Botânica, Universidade de São Paulo, Rua do Matão 277, São Paulo, SP 05508-900, Brazil, e-mail: vcassano@usp.br

²Departamento de Biología Vegetal (Botánica),

Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain

³ Departamento de Hidrobiología, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, Mexico, D.F.

09340, Mexico

⁴Instituto de Botânica, Avenida Miguel Estéfano, 3687, São Paulo, SP 04301-012, Brazil

* Corresponding author

Abstract

Currently, five genera are assigned to red seaweeds of the Laurencia complex worldwide: Chondrophycus, Laurencia s.s., Osmundea, Palisada and Yuzurua. The genera are segregated on the basis of morphological characters, especially the reproductive traits, and molecular sequences of the plastidencoded gene rbcL. Four of the genera have been resolved as monophyletic, but not Laurencia s.s. In this study based on an rbcL gene phylogeny we show the presence of a sixth lineage within the Laurencia complex, viz., Laurencia marilzae plus two unidentified species of Laurencia from Brazil. The phylogenetic position of this group, combined with the high genetic divergence from Laurencia s.s. (8.2-11%), strongly support the establishment of a sixth genus for the complex, proposed here as Laurenciella gen. nov. This new taxon differs from Laurencia s.s. and from the other genera of the complex by molecular sequence data, but is indistinguishable from Laurencia s.s. by the usual morphological features.

Keywords: *Laurencia* complex; *Laurenciella* gen. nov.; molecular phylogeny; *rbcL*; Rhodomelaceae.

Introduction

The *Laurencia* complex is a large and common group of red seaweeds that are widely distributed around the globe, mainly in the intertidal zone of tropical and subtropical regions (Guiry and Guiry 2012). Species discrimination within this complex is notoriously difficult using traditional morphological

characters because of extensive morphological plasticity combined with the difficulty in defining diacritical characters for the morphology and anatomy. Therefore, molecular markers have been useful in delimiting taxa and inferring their phylogenetic relationships.

Currently, five genera are recognized to the Laurencia complex: Chondrophycus (Tokida et Saito) Garbary et J.T. Harper, Laurencia J.V. Lamouroux, Osmundea Stackhouse, Palisada (Yamada) K.W. Nam and Yuzurua (K.W. Nam) Martin-Lescanne. The genera are distinguished by a combination of vegetative and reproductive characters, such as: (1) number of pericentral cells per vegetative axis; (2) position of the first pericentral cell relative to the trichoblast; (3) origin of the tetrasporangia; (4) presence or absence of fertility in the second pericentral cells; (5) number of sterile pericentral cells in the tetrasporangial axis; (6) origin of the spermatangial branches; (7) formation pattern of the spermatangial branches on trichoblasts; (8) number of pericentral cells in procarp-bearing segments of female trichoblasts; and (9) post-fertilization features associated with the timing of auxiliary cell formation (Nam 1999, 2006). Among genera of the complex, Laurencia is the only one that possesses four pericentral cells per vegetative axial segment; Chondrophycus, Osmundea, Palisada and Yuzurua have two pericentral cells (Nam et al. 1994, Garbary and Harper 1998, Nam 1999, 2006). The genus Osmundea is distinguished from the other genera by its tetrasporangial production from random cortical cells rather than from particular pericentral cells, and spermatangial development of the filament-type rather than the trichoblast-type (Nam et al. 1994). The genus Chondrophycus is characterized by spermatangial branches produced from two laterals on the suprabasal cell of trichoblasts (one of them remaining partly sterile), and a tetrasporangial axis with second pericentral cells that are never fertile, resulting in an axis with two sterile pericentral cells (Nam 1999). In the genus Palisada, the spermatangial branches are produced from one of two laterals on the suprabasal cells of trichoblasts, and the second pericentral cell in the tetrasporangial axis is always fertile; the resulting axis has one sterile pericentral cell (Nam 2006, 2007). The genus Yuzurua shares a majority of morphological characters with Palisada, from which it was recently segregated, but differs in not having palisade-like cells, in the presence of secondary pit-connections between cortical cells, and in the presence of procarp-bearing segments with five pericentral cells rather than four (Fujii et al. 1996).

Most of the molecular approaches have been based on the plastid-encoded rbcL gene (Nam et al. 2000, McIvor et al. 2002, Abe et al. 2006, Fujii et al. 2006, Cassano et al. 2009,

2012, Martin-Lescanne et al. 2010). Although the evolutionary relationships among genera are still not fully understood, the monophyly of Chondrophycus, Osmundea, Palisada and Yuzurua has been strongly confirmed in phylogenetic inferences based on rbcL sequences (Nam et al. 2000, McIvor et al. 2002, Fujii et al. 2006, Martin-Lescanne et al. 2010). In contrast, the monophyly of the genus Laurencia is not well supported, with L. marilzae Gil-Rodríguez, Sentíes, Díaz-Larrea, Cassano et M.T. Fujii forming a divergent lineage from Laurencia sensu stricto (Gil-Rodríguez et al. 2009, Rocha-Jorge et al. 2010, Fujii et al. 2011). Moreover, many interspecific nodes within Laurencia s.s. are also not well supported (Garbary and Harper 1998, Abe et al. 2006, Fujii et al. 2006, Martin-Lescanne et al. 2010). According to Martin-Lescanne et al. (2010), the poor resolution at the interspecific nodes within Laurencia s.s. may be attributable to either the lack of phylogenetic signals or restricted sampling.

In this study we employed the *rbc*L gene to assess specific and generic discrimination among taxa within the *Laurencia* complex, proposing the establishment of a sixth genus for the complex named here as *Laurenciella* Cassano, Gil-Rodríguez, Sentíes, Díaz-Larrea, M.C. Oliveira *et* M.T. Fujii gen. nov.

Materials and methods

Sample collection

The samples were collected in Brazil, Mexico and Canary Islands (Spain). The 85 specimens used in the molecular study are presented in Table 1. A detailed morphological study was carried out on living and 4% formalin/seawater-fixed specimens for all samples collected using a Nikon Eclipse E200 microscope (Tokyo, Japan). Voucher specimens were deposited in HRJ, SP, SPF, UAMIZ, TFC (herbarium abbreviations follow the online *Index Herbariorum* http://sciweb.nybg.org/science2/IndexHerbariorum.asp).

Molecular study

Samples used for molecular analysis were dried in silica gel. Total DNA was extracted, after grinding in liquid nitrogen, using the DNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA) following the manufacturer's instructions. A total of 20 newly generated *rbc*L sequences were included in this study; the rest were obtained from GenBank (Table 1). For each sequence generated, a total of 1467 bp of the rbcL gene were amplified in three overlapping parts with the primers pairs: FrbcLstart - R753, F492 - R1150 and F993 - RrbcS (Freshwater and Rueness 1994) using a polymerase chain reaction (PCR) master mix (Promega Corporation, Madison, WI, USA). All PCR products were analyzed by electrophoresis in 1% agarose to check product size. The PCR products were purified with MicroSpinTMS-300 HR Columns (GE Healthcare Life Sciences, Piscataway, NJ, USA) in accordance with the manufacturer's instructions. Sequencing was carried out with the BigDye Terminator Cycle Sequencing Reaction Kit (Applied Biosystems, Branchburg, NJ, USA) on an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems). The primers used for the sequencing were those used for the PCR amplification. The full sequence was obtained from both DNA strands and consensus sequences as well as multiple alignments were constructed manually using BioEdit 7.0.4.1 software (Ibis Biosciences, Carlsbad, CA, USA) (Hall 1999).

Phylogenetic analysis

Phylogenetic relationships were inferred with PAUP* 4.0b10 (Sinauer Associates, Inc., Publishers, Sunderland, MA, USA) (Swofford 2002) and MrBayes v.3.0.4 (San Diego, CA, USA) (Huelsenbeck and Ronquist 2001). Maximum-parsimony trees (MP) were constructed using the heuristic search option, tree-bisection-reconnection branch swapping, unordered and unweighted characters. Support values for the relationships discovered in each analysis were calculated by performing bootstrap analyses (Felsenstein 1985), as implemented in PAUP. Ten thousand heuristic search replicates were executed using the TBR branch-swapping algorithm. The model used in the Bayesian analysis (GTR+I+G) was selected based on maximum likelihood ratio tests implemented in Modeltest version 3.06 (Posada and Crandall 1998) with a significance level of 0.01 by the Akaike Information Criterion.

For the Bayesian analysis, four chains of the Markov Chain Monte Carlo (one hot and three cold) were used, sampling one tree every 10 generations for 1,000,000 generations starting with a random tree. The first 100,000 generations were discarded as 'burn in'. A 50% consensus tree (majority rule as implemented by PAUP) was computed after the 'burn in' point. The range of *rbcL* divergence values within and among species was calculated using uncorrected 'p' distances using PAUP.

Results

Phylogeny

We sequenced the *rbcL* gene for 21 specimens of the *Laurencia* complex: 13 specimens of *Laurencia s.s.*, five of '*L. marilzae* – *L.* sp. 2 – *L.* sp. 3 group', one of *Osmundea* and two of *Palisada*. Eighty-five sequences of 1210 bp were analyzed in this study (Table 1). The dataset for *rbcL* sequences consisted of 713 constant characters, 417 parsimony-informative sites and 87 parsimony non-informative sites.

The Laurencia complex was separated into six clades represented by the currently recognized genera Chondrophycus, Laurencia s.s., Osmundea, Palisada, Yuzurua, and by a sixth clade, the 'L. marilzae, L. sp. 2 and L. sp. 3 group' (Figure 1). The evolutionary relationships among the genera of the Laurencia complex were well-supported only in Bayesian analysis, with posterior probability of 0.98 for Osmundea and Chondrophycus clades, and 1.00 for Laurencia s.s., Yuzurua and 'L. marilzae – L. sp. 2 – L. sp. 3 group' clades. Although 'L. marilzae, L. sp. 2 and L. sp. 3 group' has been resolved as sister to Laurencia s.s. clade, only in Bayesian analysis with moderate support (0.88),

Table 1Taxa used in phylogenetic analyses.

Samples	Collection data/reference	GenBank accession number	
Bostrychia radicans (Montagne) Montagne in Orbigny	USA, Mississippi, St Louis Bay, 11 February, 1998, C.F.D. Gurgel (Lin et al. 2001)	AF259497	
<i>Bryocladia cuspidata</i> (J. Agardh) De Toni	USA, Texas, Port Aransas, 17 May, 1998, S. Fredericq and C.F.D. Gurgel (Lin et al. 2001)	AF259498	
Chondria collinsiana M.A. Howe	Brazil, Rio de Janeiro, Armação dos Búzios, Praia Rasa, 13 January, 2005, V. Cassano and J.C. De-Paula (Cassano et al. 2012)	GU330225	
C. dasyphylla (Woodward) C. Agardh	USA, North Carolina, New Hanover Co., Wrightsville Beach (Freshwater et al. 1994)	U04021	
<i>Gracilaria tenuistipitata</i> C.F. Chang <i>et</i> B.M. Xia var. <i>liui</i> Zhang <i>et</i> B.M. Xia	China, Haikou, 5 June, 1990, E.C. Oliveira (Hagopian et al. 2004)	AY673996	
Polysiphonia muelleriana J. Agardh	New Zealand, Deas Cove, Thompson Sound, Fiordland, 3 October, 2000, S. Wing and N. Goebel (Fujii et al. 2006)	AY588412	
Chondrophycus cf. undulatus	New Caledonia, Loyalty Island, Maré, 22 March, 2005, C. Payri (Martin-Lescanne et al. 2010)	FJ785307	
Chondrophycus sp. 1	New Caledonia, Loyalty Island, Lifou, 26 March, 2005, C. Payri (Martin-Lescanne et al. 2010)	FJ785309	
Chondrophycus sp. 2	New Caledonia, Loyalty Island, Maré, 21 March, 2005, C. Payri (Martin-Lescanne et al. 2010)	FJ785310	
Chondrophycus sp. 3	New Caledonia, Loyalty Island, Beautemps/Beaupré, 6 April 2005, C. Pavri (Martin-Lescanne et al. 2010)	FJ785311	
Laurencia aldingensis Saito et Womersley	Brazil, Rio de Janeiro, Armação dos Búzios, Praia Rasa, 13 January, 2005, V. Cassano and J.C. De-Paula (this study)	JF810351	
L. aldingensis	Brazil, Espírito Santo, Anchieta, Ilhote de Ubu, 30 June, 2007, E.M. Stein (this study)	_	
L. cf. brongniartii	Australia, Tarcoala Beach, S. Fredericq, 1993 (Gil-Rodríguez et al. 2010)	EF061654	
L. cf. brongniartii	Taiwan, Makang Harbour, S. Fredericq, 11 July, 1993 (Fujii et al. 2006)	AF465814	
L. caduciramulosa Masuda et Kawaguchi	Brazil, Rio de Janeiro, Angra dos Reis, Baía da Ribeira, Praia do Velho, 19 April, 2006, V. Cassano and J.C. De-Paula (this study)	-	
L. caduciramulosa	Spain, Canary Islands, Tenerife, Punta del Hidalgo, 6 May, 2008, M.C. Gil-Rodríguez, M.T. Fujii, V. Cassano and J. Díaz-Larrea (Machín-Sánchéz et al. 2012a)	JF781525	
L. caraibica P.C. Silva	Mexico, Quintana Roo, Cancún, Isla Mujeres, 23 February, 2006, A. Sentíes (Gil-Rodríguez et al. 2009)	EF658642	
L. catarinensis Cordeiro-Marino et M.T. Fuiji	Brazil, Santa Catarina, Florianópolis, Prainha da Barra da Lagoa, 16 July, 2008, P.A. Horta (this study)	-	
L. catarinensis (as L. intricata)	Brazil, Rio de Janeiro, Angra dos Reis, Ponta da Fortaleza, 14 December, 2006, V. Cassano, M.T. Széchy and M.T. Fujii (this study)	-	
L. catarinensis	Brazil, Espírito Santo, Anchieta, Ponta dos Castelhanos, 5 October, 2006, M.T. Fujij and V. Cassano (this study)	-	
L. catarinensis (as L. intricata)	Brazil, São Paulo, Santos, Laje de Santos Marine State Park, 18 August, 2008, E.C. Oliveira (this study)	-	
L. catarinensis (as L. intricata)	Brazil, Rio Grande do Norte, Maracajaú, 24 June, 2006, M.T. Fujii and LB. Silva (this study)	-	
L. catarinensis (as L. intricata)	Spain, Canary Islands, Tenerife, El Pris, 4 May, 2008, M.C. Gil-Rodríguez, M.T. Fujii, V. Cassano and J. Díaz-Larrea (Machín-Sánchez et al. 2012a)	_	
L. catarinensis (as L. intricata)	Spain, Canary Islands Tenerife, Playa Paraíso, 5 May, 2008, M.C. Gil-Rodríguez, M.T. Fujij, V. Cassano and J. Díaz-Larrea (this study)	-	
Laurencia dendroidea J. Agardh [as L. filiformis (C. Agardh) Montagnel	Brazil, Bahia, Lauro de Freitas, Praia Vilas do Atlântico, 8 January, 2008, A. Oliveira (Cassano et al. 2012)	GU330228	
L. dendroidea [as L. maiuscula	Brazil, Rio de Janeiro, Angra dos Reis. Praia do Velho. 20 July. 2006.	GU330232	
(Harvey) A.H.S. Lucas]	V. Cassano and J.C. De-Paula (Cassano et al. 2012)		
L. dendroidea (as L. arbuscula)	Brazil, São Paulo, Ubatuba, Praia do Felix, 31 August, 2000, M.T. Fujii (Fujii et al. 2006)	AF465810	
L. dendroidea (as L. filiformis)	Brazil, São Paulo, Santos, Laje de Santos Marine State Park, 18 August, 2008, E.C. Oliveira (this study)	-	

Samples	nples Collection data/reference		
L. dendroidea (as L. majuscula)	Spain, Canary Islands, Tenerife, Puerto de la Cruz, 13 July, 2006, M.C. Gil-Rodríguez, M.T. Fujii and A. Sentíes (Gil-Rodríguez et al. 2009)	EF686000	
L. flexuosa Kützing	South Africa, S. KwaZulu-Natal, Palm Beach, 7 February, 2001, S. Fredericq (Fujii et al. 2006)	AF465815	
L. intricata J.V. Lamouroux	Mexico, Campeche, Campeche Bay, 14 February 1999, C.F.D. Gurgel (Fujii et al. 2006)	AF465809	
L. intricata	USA, Florida, Long Key, Channel 5, 10 December, 1998, B. Wysor and T. Frankovich (Fujii et al. 2006)	AY588410	
L. intricata	Cuba, Ciego de Ávila, Cayo Coco, 25 September, 2005, M.T. Fujii (Cassano et al. 2012)	GU330238	
L. cf. kuetzingii	New Caledonia, Loyalty Is., Ouvéa, 31 March, 2005, C. Payri (Martin- Lescanne et al. 2010)	FJ785322	
L. cf. majuscula	New Caledonia, Ile des Pins, 2 December, 2005, C. Payri (Martin- Lescanne et al. 2010)	FJ785312	
L. cf. mariannensis	New Caledonia, Lagon Sud-Ouest, Ilot Larégnère, 11 July, 2003, C. Pavri (Martin-Lescanne et al. 2010)	FJ785313	
L. marilzae Gil-Rodríguez, Sentíes, Díaz-Larrea, Cassano et M.T. Fuiji	Spain, Canary Islands, Tenerife, Playa Paraíso, 14 July 2006, M.C. Gil- Rodríguez, M.T. Fujii and A. Sentíes (Gil-Rodríguez et al. 2009)	EF686001	
L. marilzae	Spain, Canary Islands, Tenerife, Punta del Hidalgo, M.C. Gil- Rodríguez, 12 July 2006 (Gil-Rodríguez et al. 2009)	EF686002	
L. marilzae	Mexico, Isla Mujeres, Quintana Roo, 2008, A. Sentíes and M.T. Fujii (Sentíes et al. 2011)	HQ115065	
L. marilzae	Brazil, São Paulo, Laje de Santos Marine State Park, Parcel do Sul, 25 March 2007, B. Bocha-Jorge (Bocha-Jorge et al. 2010)	GU938189	
L. cf. mcdermidiae	New Caledonia, Ile des Pins, 29 November 2005, C. Payri (Martin- Lescanne et al. 2010)	FJ785314	
L. natalensis Kylin	South Africa, KwaZulu-Natal, Palm Beach, 7 February 2001,	AF465816	
L. cf. nidifica	New Caledonia, Ile des Pins, 30 November, 2005, C. Payri (Martin- Lescane et al. 2010)	FJ785315	
L. obtusa (Hudson) J.V. Lamouroux	Ireland, County Donegal, Fanad Head, 6 July, 1998, C.A. Maggs (McIvor et al. 2002)	AF281881	
L. oliveirana Yoneshigue	Brazil, Rio de Janeiro, Arraial do Cabo, Ponta da Cabeça, 7 July, 2008,	JF810352	
L. pyramidalis Bory ex Kützing	France, Brittany, Roscoff, 5 December, 2002, F. Rousseau (Martin- Lescance et al. 2010)	FJ785316	
L. translucida M.T. Fujii et Cordeiro- Marino	Brazil, Espírito Santo, Marataízes, 15 September, 2001, M.T. Fujii (Fuji et al. 2006)	AY588408	
L. venusta Yamada	Mexico, Quintana Roo, Puerto Morelos, Punta Brava, J.D. Larrea & A Septíes 18 April 2004 (Díaz Larrea et al. 2007)	EF061655	
L. viridis Gil-Rodríguez et Haroun	Spain, Canary Islands, Tenerife, Punta del Hidalgo, Roca Negra, 6 October 2005 M C. Gil-Rodríguez (Gil-Rodríguez et al. 2009)	EF685999	
Laurencia sp. 1	Brazil, Rio de Janeiro, Armação dos Búzios, Praia Rasa, 13 January, 2005 V Cassano and LC De-Paula (this study)	-	
Laurencia sp. 1	Brazil, Espírito Santo, Anchieta, Ilhote de Ubu, 30 June, 2007, E. Stein (this study)	-	
Laurencia sp. 2	Brazil, Espírito Santo, Anchieta, Ilhote de Ubu, 30 June, 2007, E. Stein (this study)	_	
Laurancia sp. 3	Rrazil São Paulo Ilha Vitória 10 May 2008 MT Eujii (this study)	_	
Laurencia sp. 3	Brazil São Paulo Santos Laie de Santos Marine State Dark 18	_	
Laurencia sp. 5	August 2008 F.C. Oliveira (this study)	_	
Laurencia sp. 3	Brazil, São Paulo, Santos, Laje de Santos Marine State Park, 18 August 2008 E.C. Oliveira (this study)	-	
Laurencia sp. 3	Brazil, São Paulo, Santos, Laje de Santos Marine State Park, 18 August 2008. E.C. Oliveira (this study)	-	
<i>Osmundea blinksii</i> (Hollenberg	USA, California, San Mateo County, Año Nuevo, Grevhound Rock	AY172575	
et Abbott) K.W. Nam	17 July, 1996, M.H. Hommersand (McIvor et al. 2002)		

(

Samples	Collection data/reference	GenBank accession number	
O. oederi (Gunnerus) G. Furnari [as O. ramosissima (Oeder) Athanasiadis]	Ireland, County Donegal, St John's Point, 12 October, 1999, C.A. Maggs (McIvor et al. 2002)	AF281880	
O. osmunda (S.G. Gmelin) K.W. Nam	Ireland, County Donegal, St John's Point, 12 Oct. 1999, C.A. Maggs (McIvor et al. 2002)	AF281877	
O. pinnatifida (Hudson) Stackhouse	Spain, Canary Islands, La Palma, La Fajana de Barlovento, 24 January, 2008, M.C. Gil-Rodríguez (this study)	_	
O. pinnatifida	France, Brittany, Penmarch (Lin et al. 2001)	AF259495	
<i>O. sinicola</i> (Setchell <i>et</i> Gardner) K.W. Nam	USA, California, Orange County, Crescent Beach, 28 May, 2002, S. Murray (Fujii et al. 2006)	AY588407	
<i>O. spectabilis</i> (Postels <i>et</i> Ruprecht) K.W. Nam var. <i>spectabilis</i>	Mexico, Baja California, Punta Santo Thomas, 2 July, 1996, M.H. Hommersand (McIvor et al. 2002)	AY172574	
O. splendens (Hollenberg) K.W. Nam	Mexico, Baja California, Bahia Colnett, Drift, 2 July, 1996, M.H. Hommersand and J. Hughey (McIvor et al. 2002)	AY172576	
O. truncata (Kützing) K.W. Nam et Maggs	Ireland, Lough Hyne, County Cork, 11 November, 1999, C.A. Maggs (McIvor et al. 2002)	AF281879	
O. truncata	Spain, Canary Islands, Tenerife, La Barranquera, 5 May, 2008, M.C. Gil-Rodríguez, M.T. Fujii, V. Cassano and J. Díaz-Larrea (Machín-Sánchez et al. 2012b)	JF781523	
Palisada corallopsis (Montagne) Sentíes, M.T. Fujii <i>et</i> Díaz-Larrea	Mexico, Quintana Roo, Cancún, Chaac-Mol Beach, 21 August, 2005, J. Díaz-Larrea and A. Sentíes (Díaz-Larrea et al. 2007)	EF061646	
P. cf. cruciata	New Caledonia, Ile des Pins, 4 December, 2005, C. Payri (Martin- Lescanne et al. 2010)	FJ785319	
P. flagellifera (J. Agardh) K.W. Nam	Brazil, Rio de Janeiro, Rio das Ostras, Areias Negras, 3 August, 2005, V. Cassano and M.B. Barros-Barreto (Gil-Rodríguez et al. 2010)	GU330221	
P. flagellifera	Brazil, São Paulo, Ubatuba, Praia Brava, 25 May, 2001, S.M.B. Guimarães and J. Domingos (Fujii et al. 2006)	AF465804	
P. flagellifera	Spain, Canary Islands, Tenerife, Playa Paraíso, 12 July, 2006, M.C. Gil-Rodríguez, M.T. Fujii and A. Sentíes (Gil-Rodríguez et al. 2010)	EF685998	
P. furcata (Cordeiro-Marino et M.T. Fujii) Cassano et M.T. Fujii	Brazil, Paraíba, Praia de Tambaú, 24 February, 2004, M.T. Fujii (Cassano et al. 2012)	GU330226	
<i>P. patentiramea</i> (Montagne) Cassano, Sentíes, Gil-Rodríguez <i>et</i> M.T. Fujii	Philippines (A.O. Lluisma, unpublished)	AF489862	
P. perforata (Bory) K.W. Nam	Spain, Canary Islands, Tenerife, Puerto de La Cruz, San Telmo, 14 July, 2006, M.C. Gil-Rodríguez, M.T. Fujii and A. Sentíes (Cassano et al. 2009)	EU256329	
P. perforata	Brazil, Rio de Janeiro, Parati, Praia da Lula, 9 February, 2005, V. Cassano (this study)	-	
P. perforata	Brazil, São Paulo, Ubatuba, Praia Vermelha do Sul, 13 October, 2008, E.C. Oliveira (this study)	_	
P. perforata	Mexico, Quintana Roo, Cancún, Isla Mujeres, 2 March, 2007, A. Sentíes and M.C. Gil-Rodríguez (Cassano et al. 2009)	EF658641	
P. cf. perforata	New Caledonia, Lifou, 23 March, 2005, C. Payri (Martin-Lescanne et al. 2010)	FJ785320	
Palisada sp. [as P. papillosa (C. Agardh) KW Naml	Mexico, Baja California, Todos Santos, 24 October, 1999, S. Fredericq (Fujii et al. 2006)	AY588409	
Palisada. cf. robusta	New Caledonia, Lifou, 23 March, 2005, C. Payri (Martin-Lescanne et al. 2010)	FJ785321	
<i>P. thuyoides</i> (Kützing) Cassano, Sentíes, Gil-Rodríguez <i>et</i> M.T. Fujij	Philippines (A.O. Lluisma, unpublished)	AF489863	
<i>Yuzurua poiteaui</i> (J.V. Lamouroux) Martin-Lescanne var. <i>gemmifera</i> (Harvey) M.J. Wynne	Mexico, Quintana Roo, Puerto Morelos, Ojo de Agua, 16 April, 2004, J. Díaz-Larrea and A. Sentíes (Díaz-Larrea et al. 2007)	EF061648	
Y. poiteaui var. gemmifera	Cuba, La Habana, Rincon de Guanabo, 29 July, 2005, J. Díaz-Larrea and A.A. Mallea (Díaz-Larrea et al. 2007)	EF061650	
Y. poiteaui var. poiteaui	USA, Florida, Long Key, Ocean Side, 1998, S. Fredericq (Díaz-Larrea et al. 2007)	EF061652	
Y. poiteaui var. poiteaui	Mexico, Quintana Roo, Playa del Carmen, 15 March, 2005, J. Díaz- Larrea and A. Sentíes (Díaz-Larrea et al. 2007)	EF061653	

Figure 1 Bayesian analysis inferred from *rbcL* sequences for the *Laurencia* complex. The posterior probabilities (when >95%) are shown as thicker branches. Bootstrap supports for MP/NJ (2000 replicates)/ML (1000 replicates) are shown at the nodes. Asterisks indicate 100% bootstrap support.

the former clearly represents an independent lineage within the *Laurencia* complex with full support in all analyses.

The genetic divergences are summarized in Table 2. Our results clearly showed that the '*L. marilzae* – *L.* sp. 2 - L. sp. 3 group' constitutes a new genus within the *Laurencia* complex, which is here proposed as

Laurenciella Cassano, Gil-Rodríguez, Sentíes, Díaz-Larrea, M.C. Oliveira *et* M.T. Fujii gen. nov.

Diagnosis Cum characteribus generis Laurenciae sensu stricto i.e.: cellula apicali depressa in apicalis ramuli fovea; cortice extens; omnibus segmentis axialibus cum quattuor

Genera/marker Intergeneric divergence (%)		rbcL			
		Interspecific divergence (%)		Intraspecific divergence (%)	
Laurenciella and Laurencia	8.2–11.0	Laurenciella	(0.7) ^a 1.4–1.5	0-0.2	
Laurenciella and Palisada	8.7-10.2	Laurencia	1.0-6.8	0-0.62	
Laurenciella and Chondrophycus	10.4-11.3	Palisada	1.4-6.4	0-0.2	
Laurenciella and Osmundea	10.2-13.4	Chondrophycus	1.8-6.9	_	
Laurenciella and Yuzurua	10.2-10.4	Osmundea	1.9-10	0.4–1.0	
Laurencia and Palisada	7.2-11.5	Yuzurua	_	0-0.1	
Laurencia and Chondrophycus	8.8-12.2				
Laurencia and Osmundea	9.2-13.7				
Laurencia and Yuzurua	9.0-10.7				
Palisada and Chondrophycus	8.8-10.5				
Palisada and Osmundea	9.1-13.2				
Palisada and Yuzurua	8.9-11.1				
Chondrophycus and Osmundea	9.5-12				
Chondrophycus and Yuzurua	10.5-11.2				
Yuzurua and Osmundea	11.2–12.9				

 Table 2
 Range of genetic divergence of the *rbcL* gene within the *Laurencia* complex.

^aLow divergence between Laurencia sp. 2 and L. sp. 3 (see Discussion).

cellulis pericentralibus; prima cellula pericentrali sub trichoblastorum basali cellula facta; spermatangiis typi trichoblasti; ramulis spermatangialibus ab una duorum lateralium ramulorum in trichoblasti cellula suprabasica factis; segmentis procarpia ferentibus quinque pericentralibus cellulis; tetrasporangiis e cellula pericentrali peculiari factis. Ab allis generibus Laurenciae sensu lato differt in rbcL molecularibus sequentiis.

With the characters of the genus *Laurencia s.s.* i.e., apical cell always sunk in apical pit of branchlet; central axis recognizable only near apical cell; forming extensive cortex; vegetative axial segments with four pericentral cells; first pericentral cell produced underneath the basal cell of the trichoblast; spermatangial development of the trichoblast type; spermatangial branches produced from one of two laterals on the suprabasal cell of trichoblasts; procarp-bearing segments with five pericentral cells; tetrasporangial production from particular pericentral cells. Distinct from other genera of the *Laurencia* complex by the *rbc*L molecular sequences.

Etymology The generic name refers to the resemblance with *Laurencia*; *-ella*, diminutive.

Type species *Laurenciella marilzae* (Gil-Rodríguez, Sentíes, Díaz-Larrea, Cassano *et* M.T. Fujii) Gil-Rodríguez, Sentíes, Díaz-Larrea, Cassano *et* M.T. Fujii comb. nov.

Holotype TFC Phyc 13129; GenBank no.: EF686002 (*rbcL* sequence of the holotype).

Basionym *Laurencia marilzae* Gil-Rodríguez et al. (2009): J. Phycol. 45: 265–269, Figures 1–5).

Discussion

The *Laurencia* complex was resolved as a monophyletic group in all analyses, as in previous molecular studies based on the *rbcL* gene (Abe et al. 2006, Fujii et al. 2006, 2011, Cassano et al. 2009, 2012, Martin-Lescanne et al. 2010). The complex was split into six lineages represented by the well-supported genera *Chondrophycus, Laurenciella, Osmundea, Palisada* and *Yuzurua*, and by the moderate-to-well-supported genus *Laurencia*.

The intergeneric divergence values between *Laurenciella* and *Laurencia s.s.* were in the range of genetic variation observed among the other genera of the complex (Table 2). The interspecific divergence values obtained in this study were similar to those previously reported for the *Laurencia* complex (McIvor et al. 2002, Nam et al. 2000, Díaz-Larrea et al. 2007, Cassano et al. 2009, Martin-Lescanne et al. 2010, Rocha-Jorge et al. 2010).

The new genus established here, Laurenciella, includes a species described as Laurencia marilzae from the Canary Islands (Gil-Rodríguez et al. 2009), later reported from deep waters in southeastern Brazil (Rocha-Jorge et al. 2010), and from the Mexican Caribbean (Sentíes et al. 2011). The most distinctive characteristic of this species is the presence of one, rarely two, corps in cerise scattered in all cells of the thallus, a feature not shared with L. sp. 2 and L. sp. 3, which formed a full supported clade with L. marilzae and whose corps in cerise are restricted to only cortical cells and trichoblasts. Our molecular data indicate that L. marilzae is distinct from L. sp. 2 and L. sp. 3. These latter two taxa may be conspecific since the divergence in the *rbc*L sequences between L. sp. 2 and L. sp. 3 was low (0.7%, 8 bp in 1210 positions). However, sequences of cox1 (the 5' region of the mitochondrial cytochrome c oxidase I gene, Saunders 2005) obtained for both taxa (data not

shown) had higher genetic divergence between *L*. sp. 2 and *L*. sp. 3 (4.1%, 27 bp divergent in 644 positions). This variation is within the range of interspecific divergences observed for other red algae (Saunders 2005, Robba et al. 2006, Yang et al. 2007, Clarkston and Saunders 2010). Morphologically, *L*. sp. 2 and *L*. sp. 3 differ in their habit, but only tetrasporangial plants of the two species have been found; therefore these taxa need further morphological studies and broader molecular data to clarify their taxonomic position.

Laurenciella shares all generic diagnostic characters with Laurencia s.s.; it is not possible to distinguish them by traditional morphological characters. These morphological features include: four pericentral cells per vegetative axial segment, first pericentral cell produced underneath the basal cell of the trichoblast, tetrasporangia formed from particular pericentral cells, without formation of additional fertile pericentral cells, spermatangial development of trichoblast-type with spermatangial branches produced from one of two laterals on the suprabasal cells of trichoblasts, and five pericentral cells in procarp-bearing segments of female trichoblasts. When Laurencia marilzae was described, Gil-Rodríguez et al. (2009) highlighted the high level of genetic divergence between the samples of this species and the rest of Laurencia s.s. The possibility that it represented a new genus was also pointed out by Rocha-Jorge et al. (2010) based on the high genetic distance (8.6-10.7%) from Laurencia s.s. However, because of the lack of rbcL sequences representing all genera of the complex, this taxon remained assigned to Laurencia until more sequences became available for comparison.

Molecular data, especially those obtained by DNA Barcode markers (cox1 and UPA, the universal plastid amplicon, domain V of the 23S rRNA gene) (Presting 2006) have resolved more genetic groups of species than expected. The genetic groups can be further supported by morphological and anatomical features, as verified by Saunders (2008) for the Dumontiaceae, Saunders and McDonald (2010) for the Rhodymeniaceae, Clarkston and Saunders (2010) for the Kallymeniaceae and Le Gall and Saunders (2010) for the Phyllophoraceae. In contrast, the genetic groups formed for the genus Batrachospermum Roth are not supported by morphological characters that formally distinguish them as distinct species (Sherwood et al. 2008). Clarkston and Saunders (2010) have argued that when multiple species-level markers support the same group of genetic species, they must be recognized as different species, even if after extensive examination there are no morphological characters to support a formal separation. Recently, Sutherland et al. (2011) reviewed the Bangiales, establishing new genera based largely on molecular phylogenetic data. In our phylogenetic analyses with broader taxon sampling using rbcL sequences and also cox1 and UPA (data not presented), the L. marilzae, L. sp. 2 and L. sp. 3 group remained as a separate lineage within the Laurencia complex, justifying its separation as a new genus.

Acknowledgements

We are very grateful to our colleagues listed in the Table 1 for help with field material. We are indebted to anonymous reviewer for the corrections in the Latin diagnosis. We also thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) to V.C. and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Proc. 473322/2008-0). AS and JDL thank Secretaría de Educación Pública- PROMEP (UAM-I-CA-117). Additional support was provided by the MEC (Ministerio de Economía y Competitividad) of the Spanish Government (CGL 2010-14881), CNPq (Proc. 474021/2007-6) and by FAPESP (Proc. 2007/51270-7, Proc. 2010/52244-2). MCO and MTF thank CNPq for the research fellowships.

References

- Abe, T., A. Kurihara, S. Kawaguchi, R. Terada and M. Masuda. 2006. Preliminary report on the molecular phylogeny of the *Laurencia* complex (Rhodomelaceae). *Coast. Mar. Sci.* 30: 209–213.
- Cassano, V., J. Díaz-Larrea, A. Sentíes, M.C. Oliveira, M.C. Gil-Rodríguez and M.T. Fujii. 2009. Evidence for the conspecificity of *Palisada papillosa* with *P. perforata* (Ceramiales, Rhodophyta) from the western and eastern Atlantic Ocean on the basis of morphological and molecular analyses. *Phycologia 48*: 86–100.
- Cassano, V., Y. Metti, A.J.K. Millar, M.C. Gil-Rodríguez, A. Sentíes, J. Díaz-Larrea, M.C. Oliveira and M.T. Fujii. 2012. Redefining the taxonomic status of *Laurencia dendroidea* (Ceramiales, Rhodophyta) from Brazil and the Canary Islands. *Eur. J. Phycol.* 47: 67–81.
- Clarkston, B.E. and G.W. Saunders. 2010. A comparison of two DNA barcode markers for species discrimination in the red algal family Kallymeniaceae (Gigartinales, Florideophyceae), with a description of *Euthora timburtonii* sp. nov. *Botany* 88: 119–131.
- Díaz-Larrea, J., A. Sentíes, M.T. Fujii, F.F. Pedroche and M.C. Oliveira. 2007. Molecular evidence for *Chondrophycus poiteaui* var. *gemmiferus* comb. et stat. nov. (Ceramiales, Rhodophyta) from the Mexican Caribbean Sea: implications for the taxonomy of the *Laurencia* complex. *Bot. Mar.* 50: 250–256.
- Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. *Evolution 39*: 783–791.
- Freshwater, D.W. and J. Rueness. 1994. Phylogenetic relationships of some European *Gelidium* (Gelidiales, Rhodophyta) species, based on *rbcL* nucleotide sequence analysis. *Phycologia 33*: 187–194.
- Freshwater, D.W., S. Fredericq, S.B. Bradley, M.H. Hommersand and M.W. Chase. 1994. A gene phylogeny of the red algae (Rhodophyta) based on *rbcL. Proc. Natl. Acad. Sci. USA 91*: 7281–7285.
- Fujii, M.T., L. Collado-Vides and M. Cordeiro-Marino. 1996. Morphological studies of *Laurencia gemmifera* and *Laurencia poiteaui* (Rhodomelaceae, Rhodophyta) from the Nichupté Lagoon System, Quintana Roo, Mexico. *Bot. Mar.* 39: 317–326.
- Fujii, M.T., S.M.P.B. Guimarães, C.F. Gurgel and S. Fredericq. 2006. Characterization and phylogenetic affinities of the red alga *Chondrophycus flagelliferus* (Rhodomelaceae, Ceramiales) from Brazil on the basis of morphological and molecular evidence. *Phycologia* 45: 432–41.
- Fujii, M.T., V. Cassano, E.M. Stein and L.C. Carvalho. 2011. Overview of the taxonomy and of the major secondary metabolites and their biological activities related to human health of the *Laurencia* complex (Ceramiales, Rhodophyta) from Brazil. *Rev. Bras. Farmacogn.* 21: 268–282.
- Garbary, D.J. and J.T. Harper. 1998. A phylogenetic analysis of the *Laurencia* complex (Rhodomelaceae) of the red algae. *Cryptogamie*, *Algol.* 19: 185–200.

- Gil-Rodríguez, M.C., A. Sentíes, J. Díaz-Larrea, V. Cassano and M.T. Fujii. 2009. *Laurencia marilzae* sp. nov. (Ceramiales, Rhodophyta) from the Canary Islands, Spain, based on morphological and molecular evidence. *J. Phycol.* 45: 264–271.
- Gil-Rodríguez, M.C., V. Cassano, E. Aylagas, A. Sentíes, J. Díaz-Larrea, M.C. Oliveira and M.T. Fujii. 2010. *Palisada flagellifera* (Ceramiales, Rhodophyta) from the Canary Islands, Spain: a new record for the eastern Atlantic Ocean based on morphological and molecular evidence. *Bot. Mar.* 53: 31–40.
- Guiry, M.D. and G.M. Guiry. 2012. AlgaeBase version 4.2. Worldwide electronic publication, National University of Ireland, Galway. Available at: http://www.algaebase.org. Accessed 30 March, 2012.
- Hagopian, J.C., M. Reis, J.P. Kitajima, D. Bhattacharya and M.C. Oliveira. 2004. Comparative analysis of the complete plastid genome sequence of the red alga *Gracilaria tenuistipitata* var. *liui* provides insights on the evolution of rhodoplasts and their relationship to other plastids. *J. Mol. Evol.* 59: 464–477.
- Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucl. Acids Symp. Ser.* 41: 95–8.
- Huelsenbeck, J.P. and F.R. Ronquist. 2001. MrBayes. Bayesian inference of phylogeny. *Biometrics* 17: 754–755.
- Le Gall, L. and G.W. Saunders. 2010. DNA barcoding is a powerful tool to uncover algal diversity: a case study of the Phyllophoraceae (Gigartinales, Rhodophyta) in the Canadian flora. *J. Phycol.* 46: 374–389.
- Lin, S., S. Fredericq and M.H. Hommersand. 2001. Systematics of the Delesseriaceae (Ceramiales, Rhodophyta) based on LSU rDNA and *rbcL* sequences, including the Phycodryoideae, subfam. nov. J. Phycol. 37: 881–899.
- Machín-Sánchez, M., V. Cassano, J. Díaz-Larrea, A. Sentíes, M.T. Fujii and M.C. Gil-Rodríguez. 2012a. Morphological and molecular evidence demonstrates the amphi-Atlantic distribution of *Laurencia catarinensis* (Ceramiales, Rhodophyta). *Bot. Mar.* 55: 241–252.
- Machín-Sánchez, M., J. Díaz-Larrea, M.T. Fujii, A. Sentíes, V. Cassano and M.C. Gil-Rodríguez. 2012b. Morphological and molecular evidences within the species of *Osmundea* (Ceramiales, Rhodophyta) from the Eastern Atlantic Ocean, Canary Islands. *Afr. J. Mar. Sci.* 34: 27–42.
- Martin-Lescanne, J., F. Rousseau, B. De Reviers, C. Payri, A. Couloux, C. Cruaud and L. Le Gall. 2010. Phylogenetic analyses of the *Laurencia* complex (Rhodomelaceae, Ceramiales) support recognition of five genera: *Chondrophycus, Laurencia, Osmundea, Palisada* and *Yuzurua* stat. nov. *Eur. J. Phycol.* 45: 51–61.
- McIvor, L., C.A. Maggs, M.D. Guiry and M.H. Hommersand. 2002. Phylogenetic analysis of the geographically disjunct genus Osmundea Stackhouse (Rhodomelaceae, Rhodophyta). Constancea 83.9 [online publication of the Jepson Herbarium, UC, Berkeley: http://ucjeps.berkeley.edu/constancea/83/mcivor_ etal/osmundea.html. Accessed 13 January 2011.
- Nam, K.W. 1999. Morphology of *Chodrophycus undulata* and *C. parvipapillata* and its implications for the taxonomy of the *Laurencia* (Ceramiales, Rhodophyta) complex. *Eur. J. Phycol.* 34: 455–468.

- Nam, K.W. 2006. Phylogenetic re-evaluation of the *Laurencia* complex (Rhodophyta) with a description of *L. succulenta* sp. nov. from Korea. J. Appl. Phycol. 18: 679–697.
- Nam, K.W. 2007. Validation of the generic name *Palisada* (Rhodomelaceae, Rhodophyta). *Algae* 22: 53–55.
- Nam, K.W., C.A. Maggs and D.J. Garbary. 1994. Resurrection of the genus *Osmundea* with an emendation of the generic delineation of *Laurencia* (Ceramiales, Rhodophyta). *Phycologia 33*: 384–395.
- Nam, K.W., C.A. Maggs, L. McIvor, M.J. Stanhope. 2000. Taxonomy and phylogeny of *Osmundea* (Rhodomelaceae, Rhodophyta) in Atlantic Europe. J. Phycol. 6: 759–772.
- Posada, D. and K.A. Crandall. 1998. Modeltest: testing the model of DNA substitution. *Bioinformatics* 14: 817–818.
- Presting, G. 2006. Identification of conserved regions in the plastid genome: implications for DNA barcoding and biological function. *Can. J. Bot.* 84: 1434–1443.
- Robba, L., S.J. Russell, G.L. Barker and J. Brodie. 2006. Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). *Am. J. Bot.* 93: 1101–1108.
- Rocha-Jorge, R., V. Cassano, M.C. Oliveira and M.T. Fujii. 2010. The occurrence of *Laurencia marilzae* (Ceramiales, Rhodophyta) in Brazil based on morphological and molecular data. *Bot. Mar.* 53: 143–162.
- Saunders, G.W. 2005. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. *Phil. Trans. Roy. Soc. Lond. B Biol. Sci. 360*: 1879–88.
- Saunders, G.W. 2008. A DNA barcode examination of the red algal family Dumontiaceae in Canadian waters reveals substantial cryptic species diversity. 1. The foliose *Dilsea–Neodilsea* complex and *Weeksia. Botany* 86: 773–789.
- Saunders, G.W. and B. McDonald. 2010. DNA barcoding reveals multiple overlooked Australian species of the red algal order Rhodymeniales (Florideophyceae), with resurrection of *Halopeltis* J. Agardh and description of *Pseudohalopeltis* gen. nov. *Botany* 88: 639–667.
- Sentíes, A., J. Díaz-Larrea, V. Cassano, M.C. Gil-Rodríguez and M.T. Fujii. 2011. *Laurencia marilzae* (Ceramiales, Rhodophyta) from the Mexican Caribbean: a new record for the tropical western Atlantic. *Bull. Mar. Sci.* 87: 681–686.
- Sherwood, A.R., M.L. Vis, T.J. Entwisle, O. Jr. Necchi and G.G. Presting. 2008. Contrasting intra versus interspecies DNA sequence variation for representatives of the Batrachospermales (Rhodophyta): Insights from a DNA barcoding approach. *Phycol. Res.* 56: 269–279.
- Sutherland, J., S. Lindstrom, W. Nelson, J. Brodie, M. Lynch, M.S. Hwang, H-G. Choi, M. Miyata, M.C. Oliveira, T. Farr, C. Neefus, A. Mortensen, D. Milstein, and K. Müller. 2011. A new look at an ancient order: generic revision of the Bangiales. *J. Phycol.* 47: 1131–1151.
- Swofford, D.L. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
- Yang, E.C., M.S. Kim, P.J.L. Geraldino, D. Sahoo, J.A. Shin and S.M. Boo. 2007. Mitochondrial *cox1* and plastid *rbcL* genes of *Gracilaria vermiculophylla* (Gracilariaceae, Rhodophyta). *J. Appl. Phycol.* 20: 161–168.

Received 3 April, 2012; accepted 19 June, 2012